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ABSTRACT

This thesis investigates the problem of statically assigning the tasks of applications

represented by repetitive task graphs (such as sonar or radar signal processing) to the

processors of a distributed memory multiprocessor system with the objective of

maximizing graph instance throughput. The repetitive nature of these task graphs allows

for pipelining and the overlapping of successive graph instances, suggesting a departure

from classical directed acyclic graph scheduling techniques. To investigate such a claim,

a version of the Mapping Heuristic (MH) [ELR 90] is extended for use with iterative

applications. Then a new heuristic, Periodic Scheduling (PS), is developed to capitalize on

the repetitive nature of these task graphs by overlapping successive graph instances. The

PS heuristic assigns tasks to processors in such a way so as to minimize the maximal

utilization of the processors and the communications links between them. This maximal

utilization figure dictates the interval between successive instances of the task graph. We

conduct experiments in which the graph instance throughput of PS is compared to that of

MH across a broad range of processor topologies, utilizing several communications/

computation ratios. It is shown that, compared to MH, the PS heuristic improves the

throughput performance between two and 50 percent. Particularly noteworthy

improvement is noted on systems with high average inter-node communications costs.
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I. INTRODUCTION

Physical limits to computer hardware constrain the performance of traditional von

Neumann architectures in compute-intensive applications. One such application of interest

is Digital Signal Processing (DSP), such as with radar or sonar. As a result of the

performance limitations of sequential architectures in executing these compute-intensive

applications, multiprocessor systems have evolved as a cost-effective and powerful means

of meeting the increasing demands of DSP and other similar problems.

Multiprocessor systems achieve high levels of performance by partitioning a program

into tasks which can be executed concurrently, then simultaneously executing these tasks

on separate processors. However, the efforts to exploit multiprocessor systems have been

affected by issues concerning how to best utilize the resources of the system when it is

executing a given application. Of prime importance among these issues is the mapping

problem, or the problem of assigning the tasks of a parallel program to the processors of

the system so as to achieve a desired performance characteristic.

Much research has been conducted into the development of methods to obtain

suboptimal yet satisfactory assignments of tasks to processors in multiprocessor systems.

These methods have taken a variety of forms, including graph-theoretic, mathematical

programming, queuing theory, and search algorithms. Heuristics, another method of

attacking the problem, involves the application of some algorithm in an attempt to obtain a

satisfactory result.

A. OBJECTIVES

Certain applications, such as DSP, are iterative in nature, executing many times

consecutively. In a DSP application data arrive periodically, resulting in the periodic

invocation of the program. Repeating the same computation is an inherent characteristic

of these applications. This characteristic allows for temporal concurrency or pipelining.
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When pipelining takes place, a series of tasks are executed in stages. Each stage in the

series is dependent upon the results obtained in earlier stages. These programs may be

executed by overlappialg successive iterations [HOA 93].

This thesis concentrates on the mapping problem with the objective of

maximizing the throughput of iterative parallel programs executing on a distributed

memory multiprocessor. This is contrasted to other research into the mapping problem,

which has centered around the objective of minimizing the execution time of one instance

of a parallel program.

A possible solution to the problem might be to assign a copy of the application's

associated task graph to each processor in the system. In real world applications, however,

the amount of software needed for such a technique would grow prohibitively large.

Additionally, this method would create the need for a huge input/output bandwidth. Finally

the response time of this technique would be unsatisfactory.

What may also appear to be a solution is the construction of a layered graph

consisting of task execution and communications information. From this graph the path in

which the heaviest edge has minimum weight is ascertained. Using a simple procedure to

label the tasks, this method runs in O(m3n) time with m tasks and n processors. However,

extending this technique to mapping iterative applications to distributed memory

multiprocessors would required that the applications associated task graph possess certain

characteristics which cannot be guaranteed. [BOK 88]

To pursue the objective of maximizing throughput in repetitive parallel

programs, the Periodic Scheduling (PS) heuristic is introduced. The PS heuristic is a

compile-time mapping heuristic. It assigns tasks represented as nodes in a directed acyclic

graph to the processors of a distributed memory multiprocessor system of an arbitrary

topology. The PS heuristic assigns tasks to processors in such a way so as to minimize the

maximum utilization of processing and communications resources. In making these

assignments, PS considers communications between tasks, resource contention and the

topology of the multiprocessor system.

2



1. Scope of the Thesis

This thesis presents PS. Previous research into the problem of allocating tasks

to processors in multiprocessor systems is explored. PS is implemented and experiments

are conducted. A range of multiprocessor topologies is considered in the experiments, and

various communications/computation ratios are used. The performance of PS is measured

and compared with the performance of the Mapping Heuristic (MH) [ELR 90].

B. THESIS ORGANIZATION

Chapter H presents an overview of the mapping problem and highlights previous

research into the problem. In Chapter III the PS heuristic is introduced and compared to

the M- heuristic. Revolving Cylinder (RC) analysis is also discussed. In Chapter IV,

research methodology is explained and the results of the experiments are analyzed. In

Chapter V, conclusions are drawn from the research and suggestions for future work are

given.
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H. BACKGROUND

A. THE MAPPING PROBLEM

1. Processors

Parallel processing systems may be represented by use of an undirected

connected graph. The vertices of this graph symbolize the processing elements of the

system. The edges connecting the vertices symbolize the communications links between

the processing elements. Figure 1 shows an example of a simple processor graph

representing a parallel processing system consisting of four processors numbered 0 to 3.

Figure 1: A simple processor graph.

We assume all processors are heterogeneous such that each processor executes

the same task at an identical rate. Processors execute one task at a time. Simultaneous

interprocessor Communications (IPC) in either direction are possible. All communications

links are assumed to be identical so that the cost of communications between tasks is

independent of the processor assigned. There is no communications cost associated with
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tasks assigned to the same processor, so that simultaneous task stop/next task start is

possible on one processor.

2. Tasks

A task is defined as a portion of a parallel program that is executed sequentially.

We consider tasks as discrete modules of instructions which communicate with their

successors only upon termination of their computation. A task must finish before its

successor starts executing, and a task cannot be preempted by a higher priority task.

Tasks of a parallel program and their interrelationships may be represented by a

weighted directed acyclic graph known as a task graph. The tasks are symbolized by the

vertices of the task graph. The edges between vertices indicate a precedence relationship

and a communications event between two tasks. Specifically, the task at the tail of an edge

must provide the results of its computation to the task at the head of the edge. Figure 2

shows an example of a simple task graph consisting of seven tasks. The letters (A-G) in

the upper half of the nodes serve to identify the tasks. Numbers in the lower half of the

nodes represent the amount of computation by that task The numbers on the edges

represent the amount of data to be communicated between the tasks.

Task granularity refers to the size of the individual task modules. When task

partitioning takes place, a parallel program is broken down into modules of appropriate

size. Adding tasks to a module increases the grain size of that module. In general, the

larger the grain size, the less the parallelism and the smaller the grain size the more the

communications. We assume that a task graph represents a parallel program which has

been previously partitioned into modules of appropriate size.

6
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3. Problem Definition

The allocation of tasks to processors consists of two major components,

mapping and scheduling. Mapping refers to the assignment of tasks to processors, while

scheduling refers to the ordering of the execution of those tasks. We define the mapping

problem as the problem of finding that arrangement which assigns tasks to processors so as

to achieve some desired performance objective.

As noted previously, our objective is maximization of throughput, but the

objective has traditionally been minimization of execution time. Execution time may be

further decomposed into two parts: the time of computation and the time of

communications. If all tasks are assigned to one processor then communications costs are

minimized but computation time is maximized. Conversely, mapping an equal number of

tasks to each processor would possibly maximize communications while perhaps

minimizing computation.

B. PRIOR WORK

1. Taxonomy of Task Allocation Methods

The problem of allocating tasks to processors in multiprocessor systems has

been widely studied. Casavant proposed a taxonomy of task scheduling techniques.

According to this taxonomy scheduling techniques may be classified as static or dynamic.

In static scheduling sufficient information is known concerning the processing elements

within the multiprocessor system, as well as sufficient information concerning the tasks to

be executed, prior to the execution of the program. Armed with such information

beforehand, each executable may be statically assigned to a particular processor. In

dynamic scheduling the decisions regarding the assignment of tasks to processors are made

as the program executes. In these cases very little is known about tasks or processors prior

to program execution. We shall be concerned with static scheduling. [CAS 88]
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It has been shown by Ullman that the problem of finding optimal solutions to the

mapping problem is NP.,complete [ULL 75]. For this reason numerous methods have been

proposed to yield suboptimal allocations which are satisfactory in terms of cost and results.

These suboptimal approaches can be divided into two categories. Approaches

within the first of these two categories are known as approximate. Approximate solutions

to the problem are obtained by ceasing to search for a solution as soon as a satisfactory one

is found. This is contrasted to carrying out the search until an optimal solution is found.

Effective approximate methods are dependent upon the availability of some metric for

deciding when a solution is to be deemed satisfactory. [CAS 88]

Methods within the second suboptimal category are known as heuristics.

Heuristic methods achieve their results while using less time and system resources than any

of the other approaches. They arrive at their solutions by making certain assumptions

concerning what is already known about the characteristics of the task graph and the

multiprocessor system. Heuristics take advantage of certain conditions which exist within

the system and which affect the system indirectly.

Heuristics may be classified in two ways: one pass-and iterative . One-pass

heuristic algorithms make assignments of tasks to processors then do not change these

assignments. Iterative approaches use an algorithm to attempt to improve on this initial

assignment at least once. [HAM 92]

Within the categories of optimal approaches and approximate methods under

static scheduling; four general categories are identified. Enumerative methods, the first

category, list and search the solution space. Mathematical programming methods find

solutions by means of integer programming techniques. Graph theoretic methods represent

each task as a graph, then apply an algorithm to this graph to accomplish task assignment.

The final category, queuing theoretic, applies algorithms based on queuing theory to the

problem.

9



2. Graph Partitioning

Graph partitioning is related to graph mapping in that graph partitioning can be

viewed as the first step of one method of obtaining satisfactory graph mappings. The graph

partitioning problem consists of partitioning the nodes of a weighted graph into subsets of

limited size so as to minimize the total cost of the edges which are cut.

An efficient graph partitioning heuristic is described by Kemighan and Lin. An

algorithm for a 2-way partition of a graph of n vertices is presented. This algorithm finds

an acceptable solution in O(n 2 ) time. The technique was extended to multiple-way

partitions via repeated application of the algorithm for 2-way partitions. It was found that

two applications of the algorithm are usually sufficient to constitute more than 95 percent

of the total improvement. [KER 70]

Zhou presented two task graph partitioning techniques for finding load-balanced

task allocation or scheduling solutions. Based on clustering techniques, the approaches

have a minimal execution time objective. It was noted that an inherent weakness of

clustering techniques, a non-predictable number of clusters, can be solved using these

approaches. [ZHO 93]

3. Mapping

Task allocation methods using network flow are introduced by Stone and

Bokhari. Mathematical models were applied to representations of two-, three- and multi-

processor systems. They showed that efficient solutions can be reached for systems of less

than four processors using network flow approaches. This left open the question of the

applicability of these approaches to more realistic multiprocessor systems. [STO 78]

A heuristic which permutes the adjacency matrix representing the task graph into

a matrix which more closely resembles the adjacency matrix of the processor graph has

been developed by Bokhari. The heuristic was designed for use on a specific target

machine known as the Finite Element Machine, an array of processors. This heuristic

10



proved acceptable for 6 X 6 processor arrays but appeared to be less acceptable for very

large arrays. [POjKI 81)

Using a dynamic programming approach, Bokhari showed that the task

allocation problem could be solved in O(mn2) time on a system of m communicating tasks

and n processors, provided the pattern of communications among the tasks can be limited

to be a tree. Programs having such a communications structure are of a common variety.

This algorithm attempts to identify the shortest tree in a task graph in order to make task

allocation assignment decisions accordingly. [BOK2 81]

An allocation approach based on a heuristic applied to a communication-ordered

policy is presented by Evans and Kessler. The communication-ordered approach models

task execution times and communications delays as simulation events. In this heuristic,

global tasks are scheduled on idle processors, prioritized by the length of the longest

precedence related path from the task to the end of the task graph. Local tasks are

scheduled on available processors subject to certain restrictions based on communications

costs and prioritized by these exit path lengths plus any communication delay saved.

Finally, an attempt is made to schedule global tasks to the processors of their predecessors.

In testing, this heuristic approach performed better than other algorithms with which it was

compared across a range of communications cost ratios. Significant improvement was

shown in highly parallel task graphs and with moderate to high communications costs.

[EVA 92]

Also explored by Evans is the relationship between processor utilization induced

by the allocation of tasks to processors and the quantity of processing elements which are

available to partitions of a partitioned multiprocessor system. The utilization of processors

was profiled for use as an input into multiprocessor partitioning. In simulation this method

of task allocation was shown to be effective in minimizing program execution time. [EVA

92]

Graph theoretic, mathematical programming, and heuristic methods are

combined by Chaudhary and Aggarwal. Using graphical representations of the task and of

11



the processor network, a third graph known as the "extended host graph" is produced. The

task graph is then mapped onto this graph. The tasks are then allocated to the processing

elements using two optimization procedures. [CHA 93]

A method of assigning tasks whereby graph matching with weak

homomorphism between task graphs and processor graphs is pursued is presented by Shen

and Tsai. The weak homomorphism chosen minimizes task turnaround time and is termed

optimal weak homomorphism. This weak homomorphism is found by means of the A*

algorithm noted in artificial intelligence. By minimizing task turnaround time, this method

hopes to minimize IPC and optimize load balancing. [SHE 85]

A static mapping heuristic called declustering is developed by Sih and Lee.

Clustering techniques divide the nodes of a task graph into groups of nodes. Each of these

groups is then mapped to the multiprocessor system by some approach. The first part of

the declustering algorithm is a clustering strategy using an analysis technique to compare

the trade-off between parallelism and IPC. The algorithm establishes then decomposes the

parallelism instances in order of importance. The granularity of the clustered nodes are then

adopted to suit the particular multiprocessor system in use. [SIH 93]

A heuristic utilizing the branch and bound algorithm in the scheduling of

cooperative, communicating nodes of a task graph is presented by Peng and Shin. The

objective of their algorithm is to minimize the maximum task response time in real-time

systems. The heuristic was found to be very efficient and extensible to problems with a

variety of constraints. [PEN 93]

A number of heuristic algorithms are proposed by Lo. These algorithms have

the goal of minimizing execution and communications costs resulting due to a static

assignment of tasks to processing elements in a distributed system. Interference costs,

which result when multiple tasks are assigned to the same processor, were included in these

algorithms. These algorithms worked well in simulation on a variety of systems. Further,

Lo's research indicated that extremely complex algorithms did not perform significantly

better than more efficient algorithms. [LOV 88]

12



Gerasoulis and Yang study the trade-off between linear clustering and nonlinear

clustering. In linear clustering tasks which have a successor-predecessor relationship are

scheduled on the same processor, exploiting parallelism. In nonlinear clustering

independent tasks are clustered together, reducing the parallelism. He finds linear

clustering to be more suitable for coarse grain task graphs. Nonlinear clustering is

preferred with finer grain tasks, since communications costs are lowered. [GER 93]

4. Summary

As can be seen from the previous research described here, many approaches to

solving the mapping problem can provide satisfactory if not optimal results. Heuristics

have been developed that take into consideration and make allowances for the

contradictory objectives of minimizing IPC and maximizing parallelism. Not answered,

however, are the effectiveness of these heuristics when the objective of mapping is changed

from minimization of execution time to maximization of throughput in those applications

represented by repetitive task graphs.

13
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III. PERIODIC SCHEDULING

A. REVOLVING CYLINDER ANALYSIS

The Revolving Cylinder (RC) technique is a method for determining task node

execution sequence in repetitive applications [SHU 92]. RC performs compile-time

analysis of task graphs, producing a restructured graph as a product. Although the RC

method was designed for use in the assignment of task nodes on a specific shared memory

multiprocessor, the theory of the technique is extensible to this research involving static

mapping in a distributed memory multiprocessor system.

The cylinder is a logical data structure used to ascertain if a task graph may be mapped

to a target multiprocessor system given requisite data rates. If the schedule of a task graph

were wrapped around, such that its end touched its beginning, the effect would be to create

a cylinder. To produce the cylinder the execution time of all task nodes are summed. The

resulting figure is divided by the number of processors. This gives the cylinder's

circumference, which is the maximum throughput that the target system will support, since

each processor is utilized fully.

Each processor in the system is assigned one band of the cylinder. Each of these bands

can be thought of as an equal portion of the total computation required to complete the task

graph. Each of these bands is divided into slots. These slots are equal in size to the size of

the smallest node in the task graph.

Consider the case of an application (such as DSP) where data arrives periodically.

This results in the periodic instantiation of the application's associated task graph. When

the task graph is mapped using the RC approach, the part of a cylinder correlating to a

specific node is equal to the execution time of that node. Each cylinder is a schedule for

one instance of the graph. Subsequent instances of the task graph are overlapped with the

15



first. Each node is assigned an index to ensure there are no conflicts between instances of

the task graph.

To illustrate RC scheduling, the sample task graph shown in Figure 3 (without

communications costs along its edges) is subjected to the RC technique. Figure 4

graphically depicts a possible result of RC scheduling applied to the task graph on a two

processor system.

Figure 3: Example task graph [AKI 93].

B. THE MAPPING HEURISTIC

The Mapping Heuristic (MH-) schedules tasks to distributed memory multiprocessors

while taking into consideration such issues as processing system topology,

communications, contention for resources, and the trade-off between IPC and computation.

[ELR 90]

MH is an adaptation of a class of scheduling heuristics known as list scheduling. List

schedules assign priorities to tasks and place the tasks on a list in decreasing order of

priority. Higher priority tasks are assigned to processors first. Once a task is ready to run,

MH assigns that task to a processor such that the task cannot finish earlier on any other

processor. In making this decision, MH considers the processor topology, contention for

resources and the speed of the processors.

16
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Delay between the moment a task finishes on one processor and the moment a

successor task commences on a second processor consists of two parts. The first part is the

time actually spent transmitting data over the link. To this is added the time spent waiting

for other messages sent over the same route, if any, to clear the route. This second part is

contention delay.

To keep track of contention, MH maintains routing tables indexed by the number of

processors. The (x,y) cell of the routing table maintains information concerning current

contention delay, the number of hops and the preferred outgoing line from processor x to

processor y. During the scheduling process, routing tables are updated to reflect the most

current communications contention information.

There is a trade-off between the frequency of updating and the expense of updating.

MH updates the routing tables on the occasion of one of two events: (1) a task on one

processor begins transmitting a message to a task on another processor, adding contention

to links between these processors, or (2) a message arrives at the destination processor,

removing contention from the links along the ro~ite between the processors. When the

example task graph shown in Figure 5 is mapped by MH to a four processor ring, the result

is represented by the Gantt chart shown in Figure 6. The labelled cells in Figure 6 indicate

periods of task execution, with the label representing the specific task being executed.

Shaded areas are periods that the specified processors (P1-P4) are idle. The total execution

time of one instance of the graph is 12 units.

C. THE PS HEURISTIC

1. Selecting a Processor

PS is similar to MH in several ways. PS considers communications, contention,

and the interconnection network in assigning tasks to processors. PS makes use of routing

tables to maintain current information on contention, number of hops and preferred

outgoing line between processors. Like MH, any processor system topology is supported

by PS, as is any processor speed.
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PS differs from MH in some key respects. The goal of MH is to minimize the

execution time of a given task graph. The goal of PS is to maximize the throughput of a

repetitive task graph. PS differs from MH, also, in the heuristic by which a processor is

selected to run a given task. PS selects the processor which minimizes the maximum

utilization of resources. Those resources include processing elements and the

communications links which connect those elements. Towards this end, PS maintains a

Processor Utilization Table to hold information on the level of utilization of the processors

and a Link Utilization Table to hold information on the level of utilization of the

communications linis in the interconnection network.

Figure 7 gives the pseudocode for the PS algorithm which chooses a processor

on which to run a task. When a task is ready to run, it is passed to the procedure, along with

the Processor Utilization Table and the Link Utilization Table. Copies of the utilization

tables are made for testing purposes within the procedure.

The ready task is tested on each processor in the system. The copy of the

Processor Utilization Table is changed to reflect how an assignment to a given processor

will affect the utilization level of that processor.

The ready task may have predecessors which are assigned to other processors.

If so, the copy of the link utilization tables is changed to reflect the effect on the links of

the mapping of the ready task to a given processor. After all predecessors have been taken

into account, the copies of the resource utilization tables accurately reflect the effects of

assigning the ready task to the processor under question. The table copies are now searched

to find the maximum utilization of any resource, and that information is stored. After each

processor has been tested, the processor that results in the minimum of these maximal

utilization levels is chosen as the processor on which to run the task.In mapping the task

graph in Figure 5 to a four processor ring, PS would first examine the impact on resource

utilization of assigning task A to processor 1. Figure 8 shows the results on the link and

processor utilization tables of such a mapping.

20



procedure SelectProcessor (Ready Task,
Processor Utilization Table,
Link Utilization Table)

for each Processor in the system

increment the associated Processor Utilization Table by

the computation time of the Ready Task

if the Ready Task has predecessors then

for each Predecessor of the Ready Task

if the Predecessor is not assigned to this Processor then

increment the Link Utilization Table of the links
connecting this Processor to the processor on
which the predecessor executed by the amount of
data sent from the Predecessor to the Ready Task

end(if)
end(for)

end(if)

find the maximum of the utilization figures for any link or
processor, given the assignment of the Ready Task to this Processor

if this maximum utilization figure is less than the maximum
utilization figure given the assignment to any other
processor then

map the Ready Task to this Processor

end(if)

end(for)
end.

Figure 7: Algorithm used by PS to select a processor on which to execute a
task.
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PI P2 P3 P4 P1 P2 P3 P4

1 0 0 0 P1 - 0 0 --

Processor Utilization Table P12 0 ... ... 0

P3 0 ... ... 0

P4 0 0

Link Utilization Table

Figure 8: PS Processor and Link Utilization Tables for assignment of task
A to processor 1.

Similar results ensue when the task is examined on other processors. PS selects the first

"best" mapping, assigning task A to processor 1.

Next PS examines the impact of assigning task B to each processor. Placing task

B on processor 1 would result in the situation depicted in Figure 9, with a maximal

utilization of three on processor 1. If task B is placed on any processor other than processor

1, the data produced by task A on processor 1 must be forwarded to the chosen processor.

Figure 10 depicts the potential impact of assigning task B to processor 2. This would give

processor 2 a utilization level of two and would increase the utilization of the link between

processor 1 and processor 2 to a level of 1. Assigning task B to processor 3 would similarly

effect resource utilization. An assignment to processor 4 might result in the resource

utilization levels depicted in Figure 11. Data transmitted from task A on processor 4 would

necessarily transit two links (1-2 and 2-4 in this case). Having tested all four possibilities,

PS assigns Task B to processor 2.

After every assignment involving the links between processors, the effects of the

assignment with respect to link contention are examined and preferred interprocessor
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routes are updated to reflect the contention. PS utilizes the same methodology for this

purpose as does MH [ELR 90].

P1 P2 P3 P4 P1 P2 P3 P4

3 0 0 0 PI - 0 0 ---

Processor Utilization Table P2 0 ... ... 0

P3 0 -.- 0

P4 -- 0 0 --

Link Utilization Table

Figure 9: PS Processor and Link Utilization Tables for assignment of task
B to processor 1.

P1 P2 P3 P4 P1 P2 P3 P4

i2 0 o 0o P1 - 1 0 ---

Processor Utilization Table P2 0 ... ... 0

P3 0 ... ... 0

P4 0 0 ---

Link Utilization Table

Figure 10: PS Processor and Link Utilization Tables for assignment of
task B to processor 2.
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PI P2 P3 P4 P1 P2 P3 P4

1 o0 0 2 P1 --- 1 0

Processor Utilization Table P2 0 ... ... I

P3 0 ... ... 0

P4 --- 0 0 ---

Link Utilization Table

Figure 11: PS Processor and Link Utilization Tables for assignment of task
B to processor 4.

As each task is ready to run, the above procedure is repeated. The potential

impact on system resources of assigning a task to a processor is examined for each

processor in turn. That processor is chosen that minimizes the maximal utilization of all

resources.

2. Instance Overlap

An essential concept of periodic scheduling is its application to iterative task

graphs. As the term implies, iterative task graphs represent those applications which

execute many times consecutively. DSP applications are an example. Large amounts of

data are continuously input and output by DSP applications on a real time basis. These

applications are characterized by the repetition inherent in their associated task graphs.

This repetition allows for the RC property of overlapping task graphs. Overlapping task

graphs represent the fact that at any point in time portions of more than one instance of a

task graph may be actively undergoing computation.
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Once PS determines to which processor a task will be assigned, that task is

assigned at the earliest time that the processor comes available. In other words, no

consideration is given at this time to task precedence relationships. If a precedence

relationship exists between the task and another task, then that task is assumed to be part of

another instance of the task graph which is overlapped with other currently executing tasks.

Since that task cannot be executed until its parents have executed, producing the data

necessary for its computation, analysis of the assigned tasks is essential in order to

determine to which instance of a task graph the task actually belongs.

To analyze the precedence relationships between tasks mapped in overlapping

task graphs, the method used in RC scheduling is implemented [LIT 91]. This algorithm

assigns indices to the allocated tasks to represent to which instance of a graph the task

belongs. The algorithm compares the completion time of a task with its predecessors and

successors to establish which index should be assigned to that task. PS uses a modified

version of the algorithm to include the effects of contention and communications costs.

Figure 12 is a Gantt chart showing how the mapping of the task graph of Figure 5 to a four

processor ring using PS might look if instance overlap were not accomplished. Figure 13

shows the same mapping, with instance overlap and the addition of indices representing the

instances associated with each task.
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Figure 12: Mapping of Figure 4 task graph to a four processor ring
without instance overlap.
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Figure 13: Mapping of Figure 4 task graph under PS with instance
overlap.
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IV. RESULTS

A. METHODOLOGY

Experiments were conducted to ascertain the throughput potential of the PS heuristic.

The results of PS are compared with the results of MH. Although the MH heuristic is not

specifically designed for mapping iterative task graphs, it may be extended to that purpose

by repeating its application to repetitive copies of a task graph.

To conduct the experiments, 250 random task graphs were generated. Each of these

task graphs consists of 60 nodes and 100 edges. The task nodes in each graph have an

average execution time of 10,000 units, giving the graph an average aggregate of 600,000

units. These 250 graphs were subdivided into five groups of 50 graphs. Each of these

groups consists of graphs averaging a particular communications/computation ratio.

Ratios used in the research were 0.01, 0.1, 0.3, 0.7, and 1.0. These ratios represent a

spectrum ranging from tasks graphs with negligible communications (i.e. computation

intensive applications) to those with equal computations and communications.

Four topologies are considered. The ring topology represents an interconnection

network with severely restricted communications flow. The fully connected network is

included to represent the least restrictive network. In between these two extremes, we

include the hypercube and the torus (toroidal mesh). Within each of these four topologies,

we consider systems consisting of four, eight and sixteen processors.

It should be noted that this cross-section of topologies and processor totals does result

in some duplication of target multiprocessing systems. For example, with four processors

the torus, the ring and the hypercube represent the same interconnection network.

Likewise, the torus and the hypercube are identical when the system consists of eight

processors.
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Since the objective of PS is to maximize throughput we wish to start a new instance of

the task graph as often as possible. Towards this end, the performance of a heuristic is

measured by the heuristic's normalized execution time. The normalized execution time of

a heuristic is arrived at by dividing the actual finish time of a task graph when mapped by

that heuristic by the lower bound on the execution time of that task graph. The lower bound

on the execution time of a task graph is arrived at by dividing the completion time of one

instance of the task graph on a sequential processor (600,000 units of time, on the average,

for the graphs used in this research) by the number of processors in the target system. The

lower bound for these experiments, then, is 150,000, 75,000 or 37,500 time units for

systems of four, eight or sixteen processors, respectively.

The normalized execution time of a heuristic will be measured along the y-axis of

subsequent graphs in this section. It should be noted that numbers along the y-axis differ

throughout the various figures.

B. EXPERIMENTS

1. Analysis by Topology

First we consider the performance of PS in executing one instance of a task

graph. PS and MH are used to map task graphs onto the same target multiprocessor

systems, and the results are compared. The communications/computation ratio is limited

to 0.3 in the experiment, representing a mid-range communications load. Analysis of

results given four processors, eight processors and sixteen processors will be undertaken

for each topology. The average case will also be considered.

In all cases, a distinct advantage is noted when the PS heuristic is used for

mapping to systems composed of a greater number of processors. On systems of fewer

processors, tasks are less likely to be mapped until their predecessors have executed. As

the number of available processors increases, tasks generally are available for mapping

sooner. Under MH, however, precedence relationships result in delays in executing these

tasks until predecessors have completed. Consequently, more processor idle time, less
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efficiency and a longer execution time results. Under PS, the task is mapped and packed

and precedence relationships are handled by node indexing. Better results ensue.

a. Ring

The ring is the most restrictive topology studied in terms of

communications flexibility. It is also the topology which shows the greatest difference in

performance of the two heuristics. As seen in Figure 14, the normalized execution time of

PS and MH are similar on rings of four processors. With eight processors the difference

becomes somewhat more significant. The most dramatic difference is evident on systems

of sixteen processors. On these systems the average normalized execution time of one

instance of the graph under PS constitutes about a 60 percent improvement over that using

MH.

Normalized Execution Time
Ring Topology

Comnumicmtions/Computption Ratio - 0.3

3.5.

2.5----------------------------------

1 .5 ..........

0.5 -
4 8 16

Number of Processors
14" MH A PS

Figure 14: Normalized execution time of PS and MH on a ring of
processors.

b. Hypercube

Mapping one instance of a task graph under MH on a hypercube of four

processors shows only a slight disadvantage compared to a mapping produced by PS, as
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shown in Figure 15. On systems of eight processors, the results under PS show a more

marked advantage. When ma-ped to a sixteen processor hypercube, however, the most

pronounced difference in performance is observed. A mapping by PS executes in about

half the time it takes the mapping produced by MH.

Normalized Execution Time
Hypercube Topology

Commnic~ationx/Compution Ratio - 0.3

3.5

0.5 4
4 8 16

Number of Processors
[WMH " PS

Figuri 15: Normalized execution time of PS and MH on the hypercube.

c. Torus

Figure 16 depicts the results of tests conducted on the torus topology. On

torus systems the difference in performance between PS and MH is virtually identical to

that seen on the hypercube topology. Specifically, little difference appears on four

processor systems. A more distinct advantage of PS is evident on eight processor systems.

On sixteen processor systems the PS mapping is roughly twice as fast as a mapping by MH.
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Normalized Execution Time
Torus Topology

Coaumuunicaioa/Cooputiiion Raio - 0.3

3.5

2.5 ------------------------------------------------------

0.51 .5 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4 8 16

Number of Processors
14 M H A

Figure 16: Normalized execution time of PS and MH on the torus.

d. Fully Connected Network

Figure 17 shows the efficiency of the two heuristics on the fully connected

network. Normalized execution times are very similar to those of the torus and the

hypercube. On a fully connected network of four processors, PS and MH perform

similarly. The advantage of PS grows as the number of processors grows. On the average,

on sixteen processor systems, mappings produced by PS result in a normalized execution

time about half that of mappings produced by the MH heuristic.

e. The average case

Figure 18 depicts the average performance of PS and MH across all

topologies. In general, PS shows the greatest advantage over MH in systems with a larger

number of processors. Even on systems of fewer processors, however, PS still gives some

advantage over MH.
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Normalized Execution Time
Fully Connected Network

Commiunications/Computation R•aio - 0.3

3.5

2.5

0.54 8 16

Number of Processors
I MH L PSj

Figure 17: Normalized execution time of PS and MH on fully connected
network.

Normalized Execution Time
All Topologies

Commumications/Computation Rmfio - 0.3

3.5

2.5--------------------------------------------------- --

1.5 - .--------------

0.5,, 4 8 16

Number of Processors
QW MH &HjS

Figure 18: Normalized execution time of PS and MH across all topologies.
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2. Variation of Communications/Computation Ratios

Next, attention is turned to the effects on the two heuristics of varying the

communications/computation ratios within the task graphs. Only systems composed of

sixteen processors are considered. All topologies are tested.

Figure 19 shows the results on the ring topology. On topologies with restricted

communications flow, and as the amount of communications in an application grows,

execution under the PS heuristic begins to slow. As the cost of utilizing a communications

resource becomes higher, PS will choose to assign a task node to the same processor as its

predecessor, as this serves to minimize the utilization of the communications resources.

This results, however, in a lengthier execution time, as seen by the increase observed in

Figure 19 at communications/computation ratios beyond 0.3. However, the increases also

effect the MH heuristic, and PS still maintains a distinct performance advantage over MH

at communications/computation ratios ranging above 0.3.

On the hypercube and torus topologies, shown in Figure 20 and Figure 21,

respectively, a similar drop-off in performance is noted at communications/computation

ratios beyond the mid-range value. Although PS still has an advantage in normalized

execution time at all levels, the advantage is less marked.

Figure 22 shows the comparison of normalized execution time with varied

communications/computation ratios on the fully connected network. The decline in

advantage of PS noted with other topologies is not evident on the fully connected network,

reflective of the greater communications flexibility of the topology.

In Figure 23, the normalized execution time of the two heuristics is presented as

an average of all topologies. At all levels, PS maintains a performance advantage over the

MH heuristic.
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Normalized Execution Time
Ring Topology 16 Processors

8

7
6

5

4

3
2

0.01 0.'1 0.3 0.7

Communications/Com putation Ratio
[ MH "f PS

Figure 19: Normalized execution time on the processor ring when
communications/computation is varied.

Normalized Execution Time

Hypercube Topology 16 Processors

8
7

6

5
4

3

2 - _ - - . ................... _ _

0.01 0.1 0.3 0.7 1
Communications/Computation Ratio

M H IPS

Figure 20: Normalized execution time on the hypercube when
communications/computation is varied.
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Normalized Execution Time
TorusTopology 16 Processors

8

7
6

4

3
2_

0.01 0.1 0.3 0.7 1

Communications/Computation Ratio
14W MH -A, PS

Figure 21: Normalized execution time on the torus when communications/
computation is varied.

Normalized Execution Time
Fully Connected Network 16 Processors

8

7

6
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4
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0.01 O01 0.3 0.'7.
Communications/Computation Ratio

1 MH -A, PS

Figure 22: Normalized execution time on the fully connected network
when communications/computation is varied.
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Normalized Execution Time
All Topologies 16 Processors

8

7

4

I - - - - --

0.01 0.1 0.3 0.7 1

Communications/Computation Ratio
14 MH -A, PS

Figure 23: Normalized execution time across all topologies when
communications/computation is varied.

3. Buffering Requirements.

As described earlier, due to the overlapping effect of task graphs in periodic

scheduling, PS requires the assignment of indices to tasks in order to determine to which

instance of a task graph that particular task belongs. In this section we briefly analyze these

iteration indices, with the objective of determining the average number of instances of a

task graph required in order to execute one complete task graph.

Figure 24 shows the average number of required graph instances on sixteen

processor systems. The fully connected network is compared with other topologies, which

are presented as an average. Note that the number of live instances required for all

topologies other than the fully connected network declines at communications/computation

ratios beyond 0.3.

As the amount of communications between tasks grow, so grows the necessary

delay between a task and its successor if they are assigned to different processors. If the

finish time of a node plus communications time and resource contention is greater that the
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start time of a successor, the successor must begin execution on a subsequent iteration of

the graph. Hence, in general, more communications implies more graph instances and

more indices. At some point, however, as the communications/computation ratio grows,

the PS heuristic will tend to assign nodes with a predeccessor/successor relationship to the

same processor, resulting in a later execution time, as observed earlier. When PS assigns

these nodes with a precedence relationship to the same processor, the need for assigning

different indices to the nodes is no longer present. The two nodes may now execute within

the same instance of the task graph. Consequently fewer indices are required.

Average Buffering Requirements

16 Processors PS Heuristic

12

10

Fully ConnNe

Other Topologies
S4

b..

2

0.01 0.1 0.3 0.7 1

Communications/Com putation Ratio

Figure 24: Average number of required graph instances on the ring and
the fully connected network (FCN).

In Figure 25 this relationship between graph instances and execution time is

graphically depicted. On topologies other than the fully connected network, the increase

in execution time (due to tasks with a precedence relationship being mapped to the same

processor) coincides with a decrease in the number of graph instances required.
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Relationship Between Graph Instances
and Execution Time

16 Processors

~-Ai
FCN Exec Time

FCN Graph Instances

Other Exec Time

Other Graph Instances

E

0.01 0.1 0.3 0.7 1
Communications/Computation Ratio

Figure 25: Relationship between graph instances and execution time at
various communication/computation levels. (FCN is fully connected

network).

C. GRAPH UNROLLING

An argument may be made that the actual throughput of MH can be better ascertained

by unrolling. Unrolling consists of duplicating the task graph and presenting the multiple

copies of the task graph for mapping by the heuristic. If i instances of a task graph are

presented to MH for mapping, the total execution time of those instances will be less than

i times the execution time of one instance of the graph. This is true since one instance of a

task graph will have no precedence relationships with any other instance of a graph, and

ME may map nodes of one instance without regard for nodes of another instance. For this

reason one instance of a graph may be begun prior to the completion of a prior instance.

This results in an average execution time of multiple instances being less than the exec:ution

time of one instance of the graph.

For the purposes of graph unrolling, we identify the unrolling factor u. The unrolling

factor reflects the number of instances of a graph presented for mapping (i.e. if u = 2, two

graph instances are mapped).

40



1. MH With Graph Unrolling

In this experiment, we consider the results of mapping MH to the sixteen

processor ring and the sixteen processor fully connected network. Graphs will be mapped

using MH for u=2, u=3 and u=5. These results are compared with the results of mapping

using the PS heuristic without graph unrolling (u=l). All communications/computation

ratios are considered.

Figure 26 shows the results of the mapping produced by MH with u=2 versus the

mapping produced by PS with u=l. As seen in Figure 26, MH, on a fully connected

network produces a mapping somewhat competitive with PS particularly at lower levels of

communications/computation. On the ring and at higher levels of communications/

computation, however, MH continues to lag behind PS.

Normalized Execution Time
16 Processors with Graph Unrolling

6

5 SD AIM., u2

PS: u=1

3 MH FCN

2MH Ring

PS FCN

PS Ring

0.01 0.1 0.3 0.7 1
Corn munications/Computation Ratio

Figure 26: Comparison of PS (u=l) and MH (u=2).

When u=3 for MH and u=l for PS, at lower levels of communications/

computation, MH executes an instance of the task graph faster than or similar to PS on all

topologies, as seen in Figure 27. MH on the ring, indicative of that topology's restricted

communications flow, begins to lag behind PS at only moderate levels of communications/
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computation. MH on the fully connected network tracks closely with PS at all

communications/computation ratios.

Normalized Execution Time
16 Processors wYAh Graph Unrolling

6

5 MH: u=3

PS: 1=I
4

3 MH FCN

2 MH RingII

1 -- • PS FeN
PS RingOI__ _ _II

0.01 0.1 0.3 0.7 1

Communications/Computation Ratio

Figure 27: Comparison of PS (u=l) and MH (u=3).

Figure 28 shows that, with an unrolling factor of 5, the performance of MH has

overtaken that of PS (u=1) in virtually every case. Furthermore, this superior performance

is mostly independent of the communications/computation ratio. In the case of the ring of

processors, MH (u=5) outperforms PS (u=l) at the lower levels of communications/

computation. This shows that, in the long run, the average execution time of MH will be

better than the execution time of one iteration of PS in most cases. However, MH is

extremely sensitive to communications/computation increases, particularly on topologies

with more restrictive communications flow, such as the ring.
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Normalized Execution Time
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Figure 28: Comparison of PS (u=l) and MIH (u--5).

2. PS With Graph Unrolling

Mapping multiple instances of a task graph using MH can provide results close

to or, usually, superior to those of PS without graph unrolling, especially at lower levels of

communications/computation ratios. The benefits of grai rolling can apply to PS also.

To accurately depict the potential of both heuristics, and to give a more realistic view of

throughput of an iterative task graph, PS should also be allowed to take advantage of the

graph unrolling previously applied to MH.

In this section we examine the effects of mapping multiple instances of a task

graph to both PS and MH. Mappings produced by PS using unrolling factors of u=2, u=3

and u=5 are examined and compared with mappings produced by MH with the same

unrolling factors. The ring and the fully connected network are considered on systems of

sixteen processors at all communications/computation levels.

Figure 29 shows the results of mapping using MH and PS with u=2 for both

heuristics. When u=2, the line depicting the performance of PS on the fully connected

network is virtually flat, with execution time close to the ideal at all levels of
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communications/computation. The performance of MH with u=2 has been previously

described. The performance of PS on the ring, as seen previously, begins to decline

somewhat at the higher communications levels, but still maintains a fair advantage over

MH.

Normalized Execution Time
16 Processors with Graph Unrolling

AMf: u2

4 -----. -..-- PS: u=2

3 E
3 FCN

2 MH Ring

PS FCN

PS Ring

0.01 0.1 0.3 0.7 1
Communications/Computation Ratio

Figure 29: Comparison of PS (u=2) and MH (u=2).

Figure 30 compares the performance of PS and MH at u=3. Again, the

performance of PS on the fully connected network approaches the ideal at all

communications/computation ratios. MH produces mappings with normalized execution

times competitive with those of PS at the lowest ratios. The disparity between the two

grows, however, as the communications/computation ratios grow. In the case of the ring

topology, the normalized execution times of MH track closely with those of PS at the lower

communications levels.

Figure 31 depicts the performance of MH and PS when u=5 for both heuristics.

Once again, PS on the fully connected network produces mappings which execute at levels

generally close to the ideal given any communications/computation ratio. MH produces

mappings which are fairly competitive with those produced by PS for both topologies
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particularly at lower levels. PS continues to maintain an advantage, however, at the higher

levels of communications/computation.

Normalized Execution Time

16 Processors with Graph Unrolling
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PS: u= 34

3 MH FCN
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Figure 30: Comparison of PS (u=3) and MH (u=3).
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Figure 31: Comparison of PS (u--5) and MH (u--5).
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77.

V. CONCLUDING REMARKS

A. CONCLUSION

This thesis presents the Periodic Scheduling (PS) heuristic. The objective of PS is to

maximize the throughput of an application represented by an iterative task graph when

mapped to a distributed memory multiprocessor. This contrasts to the traditional objective

of mapping heuristics, which has been minimization of execution time. The repetitive

nature of the target applications makes possible the overlapping of distinct instances of

their associated task graphs. PS capitalizes on this characteristic. In mapping tasks to

processors, PS considers the topology of the multiprocessor system, communications

between tasks, and contention for communications resources within the ICN.

The PS heuristic is described in the thesis in some detail. In tests, the performance of

PS is compared to that of a version of the Mapping Heuristic (MH) which is extended for

use in an iterative task environment.. It is shown by these tests that PS can provide superior

throughput to the MH heuristic. PS is particularly superior in two cases. First, PS gives

better throughput on systems composed of a larger number of processing elements.

Second, the use of PS is advantageous when the target topology has a restricted pattern of

communications flow, such as the ring of processors.

B. FUTURE WORK

Additional research using PS is needed in the area of mapping task graphs which

contain cycles. Cycles within a task graph make additional pipeline stages problematical.

The cycles become the bottleneck computations in the task graph, changing the dynamics

of task execution and complicating mapping efforts.

A second area of ,itential research involves using PS in a two part scheduling strategy.

Such a strategy would begin with an algorithm to cluster the nodes according to some

heuristic. Once clustered, the nodes would be mapped to processors by PS.
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More realistic communications models need to be applied to PS. Such issues as

message initiation costs will no doubt affect the performance of PS and should be

investigated.
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